Standard Forms of Equation of a Circle

General Form

  • x² + y² + 2gx + 2fy + c = 0
  • Centre: (−g, −f)
  • Radius: √(g² + f² − c)

Centre–Radius Form

  • (x − h)² + (y − k)² = a²
  • Centre: (h, k), Radius: a
  • If centre is origin: x² + y² = r²

Diameter Form

  • If (x₁, y₁) and (x₂, y₂) are endpoints of diameter:
  • (x − x₁)(x − x₂) + (y − y₁)(y − y₂) = 0

Parametric Equations of a Circle

  • For x² + y² = a²:
  • x = a cosθ, y = a sinθ
  • For (x − h)² + (y − k)² = a²:
  • x = h + a cosθ, y = k + a sinθ
  • For x² + y² + 2gx + 2fy + c = 0:
  • x = −g + √(g² + f² − c) cosθ, y = −f + √(g² + f² − c) sinθ

Circle in Special Positions

Touching Coordinate Axes

  • Touching both axes: (x ± a)² + (y ± a)² = a²
  • Touching x-axis at (h, 0): (x − h)² + (y − a)² = a²
  • Touching y-axis at (0, k): (x − a)² + (y − k)² = a²

Chord & Intercepts

  • Length of chord at distance p from centre:
  • Chord length = 2√(a² − p²)
  • For x² + y² + 2gx + 2fy + c = 0:
  • Intercept on x-axis: 2√(g² − c)
  • Intercept on y-axis: 2√(f² − c)

Position of a Point w.r.t. a Circle

  • For point (x₁, y₁), evaluate:
  • S₁ = x₁² + y₁² + 2gx₁ + 2fy₁ + c
  • S₁ > 0 → outside the circle
  • S₁ = 0 → on the circle
  • S₁ < 0 → inside the circle

Position of a Line w.r.t. a Circle

  • If p = perpendicular distance from centre to line, r = radius:
  • p > r → line outside circle
  • p = r → tangent
  • p < r → secant (chord)
  • p = 0 → diameter

Equation of Tangent

  • Tangent at point (x₁, y₁) to x² + y² + 2gx + 2fy + c = 0:
  • xx₁ + yy₁ + g(x + x₁) + f(y + y₁) + c = 0
  • Tangent to x² + y² = a² with slope m:
  • y = mx ± a√(1 + m²)

Equation of Normal

  • Normal at (x₁, y₁) to x² + y² + 2gx + 2fy + c = 0:
  • (x − x₁)/(x₁ + g) = (y − y₁)/(y₁ + f)
  • For x² + y² = a²:
  • x/x₁ = y/y₁

Length of Tangent from a Point

  • From point (x₁, y₁) to circle S = 0:
  • Length = √S₁
  • Angle between two tangents:
  • 2 tan⁻¹ (√S₁ / r)

Pair of Tangents

  • Combined equation from point (x₁, y₁):
  • S · S₁ = T²

Director Circle

  • Locus of intersection of perpendicular tangents
  • For x² + y² = a²:
  • x² + y² = 2a²

Chord of Contact

  • From point (x₁, y₁) to circle S = 0:
  • xx₁ + yy₁ + g(x + x₁) + f(y + y₁) + c = 0

Pole & Polar

  • Polar of point (x₁, y₁) w.r.t. x² + y² = a²:
  • xx₁ + yy₁ = a²
  • For general circle:
  • xx₁ + yy₁ + g(x + x₁) + f(y + y₁) + c = 0

Radical Axis

  • For circles S = 0 and S′ = 0:
  • S − S′ = 0
  • Perpendicular to line joining centres
  • Coincides with common chord if circles intersect

Radical Centre

  • Point of intersection of radical axes of three circles
  • Obtained by solving any two of:
  • S₁ − S₂ = 0, S₂ − S₃ = 0, S₃ − S₁ = 0

Family of Circles

  • Through intersection of two circles:
  • S + λS′ = 0, λ ≠ −1
  • Through intersection of a circle and a line:
  • S + λL = 0
Visited 1 times, 1 visit(s) today
Was this article helpful?
YesNo

Leave a Reply

Your email address will not be published. Required fields are marked *

Close Search Window