Indefinite Integral

  • If F′(x) = f(x), then ∫ f(x) dx = F(x) + C
  • C is the constant of integration

Basic Theorems of Integration

  • ∫ k f(x) dx = k ∫ f(x) dx
  • ∫ [f(x) ± g(x)] dx = ∫ f(x) dx ± ∫ g(x) dx
  • d/dx [ ∫ f(x) dx ] = f(x)
  • ∫ d/dx [f(x)] dx = f(x) + C

Standard Integrals

  • ∫ xⁿ dx = xⁿ⁺¹/(n+1) + C, n ≠ −1
  • ∫ 1/x dx = ln|x| + C
  • ∫ eˣ dx = eˣ + C
  • ∫ aˣ dx = aˣ / ln a + C
  • ∫ sin x dx = −cos x + C
  • ∫ cos x dx = sin x + C
  • ∫ tan x dx = ln|sec x| + C
  • ∫ cot x dx = ln|sin x| + C
  • ∫ sec x dx = ln|sec x + tan x| + C
  • ∫ cosec x dx = ln|cosec x − cot x| + C
  • ∫ sec²x dx = tan x + C
  • ∫ cosec²x dx = −cot x + C
  • ∫ sec x tan x dx = sec x + C
  • ∫ cosec x cot x dx = −cosec x + C

Important Algebraic Forms

  • ∫ 1/(x² + a²) dx = (1/a) tan⁻¹(x/a) + C
  • ∫ 1/(x² − a²) dx = (1/2a) ln|(x−a)/(x+a)| + C
  • ∫ 1/√(a² − x²) dx = sin⁻¹(x/a) + C
  • ∫ 1/√(x² + a²) dx = ln|x + √(x² + a²)| + C
  • ∫ 1/√(x² − a²) dx = ln|x + √(x² − a²)| + C

Exponential–Trigonometric Integrals

  • ∫ eax sin bx dx = eax(a sin bx − b cos bx)/(a² + b²) + C
  • ∫ eax cos bx dx = eax(a cos bx + b sin bx)/(a² + b²) + C

Integration by Substitution

  • Used when integrand contains a function and its derivative
  • Put f(x) = t so that f′(x) dx = dt
  • ∫ f(f(x)) f′(x) dx = ∫ f(t) dt
  • If integrand is of form f(ax + b), put ax + b = t

Useful Standard Substitutions

  • √(a² − x²) → x = a sinθ
  • √(a² + x²) → x = a tanθ or a sinhθ
  • √(x² − a²) → x = a secθ or a coshθ
  • √((a−x)/(a+x)) → x = a cosθ

Integration by Parts

  • ∫ u v dx = u ∫ v dx − ∫ (du/dx)(∫ v dx) dx
  • Choose u using ILATE rule:
  • Inverse trigonometric → Logarithmic → Algebraic → Trigonometric → Exponential
  • For only log or inverse trig functions, take the other function as 1

Special Results

  • ∫ eˣ [f(x) + f′(x)] dx = eˣ f(x) + C
  • ∫ f′(x)/f(x) dx = ln|f(x)| + C
  • ∫ f′(x)/√f(x) dx = 2√f(x) + C

Trigonometric Rational Integrals

  • For integrals involving a sin x + b cos x, write:
  • a = r cosθ, b = r sinθ
  • Then denominator reduces to r sin(x + θ) or r cos(x + θ)

JEE Main Focus Tips

  • Always try substitution before expansion
  • Memorise standard results — direct questions are common
  • Integration by parts is frequently tested with log and inverse trig
  • Watch for expressions of the form f(x)+f′(x)
  • Final answer must include + C
Visited 1 times, 1 visit(s) today
Was this article helpful?
YesNo

Leave a Reply

Your email address will not be published. Required fields are marked *

Close Search Window