Definition of Limit

  • The real number l is the limit of a function f(x) as x → a if for every ε > 0, there exists δ > 0 such that:
  • 0 < |x − a| < δ ⇒ |f(x) − l| < ε
  • Denoted by: limx→a f(x) = l

Indeterminate Forms

  • 0/0
  • ∞/∞
  • 0 × ∞
  • ∞ − ∞
  • ∞⁰, 0⁰, 1⁰
  • Limits are evaluated to resolve these forms

Left Hand Limit (LHL) & Right Hand Limit (RHL)

  • LHL: limx→a⁻ f(x) = limh→0⁺ f(a − h)
  • RHL: limx→a⁺ f(x) = limh→0⁺ f(a + h)
  • Limit exists at x = a if LHL = RHL
  • If limit exists, it is unique

Properties of Limits

  • If limx→a f(x) = l and limx→a g(x) = m, then:
  • Sum: lim(f ± g) = l ± m
  • Product: lim(fg) = lm
  • Quotient: lim(f/g) = l/m (m ≠ 0)
  • Constant multiple: lim(Kf) = K · lim f
  • Modulus: lim|f(x)| = |lim f(x)|
  • Power rule: lim[f(x)]ⁿ = [lim f(x)]ⁿ
  • Composite function: lim f(g(x)) = f(lim g(x))

Important Standard Limits

  • limx→0 (sin x)/x = 1
  • limx→0 (tan x)/x = 1
  • limx→0 (1 − cos x)/x² = 1/2
  • limx→0 (eˣ − 1)/x = 1
  • limx→0 (aˣ − 1)/x = ln a, a > 0
  • limx→0 ln(1 + x)/x = 1
  • limx→0 (1 + x)1/x = e
  • limx→∞ (1 + 1/x)x = e

Algebraic Limits

  • limx→a (xⁿ − aⁿ)/(x − a) = n·aⁿ⁻¹
  • limx→a (xᵐ − aᵐ)/(xⁿ − aⁿ) = (m/n)·aᵐ⁻ⁿ

Methods of Evaluating Limits

  • Substitution method
  • Factorisation method
  • Rationalisation / Double rationalisation
  • Expansion method (using series)
  • When x → ∞ (highest power method)
  • Simplification
  • L’Hospital’s Rule
  • Sandwich (Squeeze) Theorem

L’Hospital’s Rule

  • Applicable only for forms 0/0 or ∞/∞
  • If lim f(x) = 0 and lim g(x) = 0 or both → ∞:
  • lim f(x)/g(x) = lim f′(x)/g′(x) (if RHS exists)
  • Differentiate numerator and denominator separately

JEE Main Focus Tips

  • Standard limits must be memorised
  • Check LHL and RHL for piecewise functions
  • Convert complex expressions to standard forms
  • Use expansion for small x problems
  • L’Hospital’s Rule only after confirming 0/0 or ∞/∞ form
Visited 1 times, 1 visit(s) today
Was this article helpful?
YesNo

Leave a Reply

Your email address will not be published. Required fields are marked *

Close Search Window