Trigonometric Equations: Basics
- Equations involving trigonometric functions of an unknown angle are called trigonometric equations.
- A solution is a value of θ that satisfies the equation.
- Throughout this chapter, n ∈ Z (n is an integer).
Periodic Functions
- A function f(x) is periodic if f(x + T) = f(x) for all x.
- The smallest positive T is called the fundamental period.
Periods of Standard Functions
- sin(ax + b), cos(ax + b), sec(ax + b), cosec(ax + b): 2π / a
- tan(ax + b), cot(ax + b): π / a
- |sin(ax + b)|, |cos(ax + b)|, |sec(ax + b)|, |cosec(ax + b)|: π / a
- |tan(ax + b)|, |cot(ax + b)|: π / (2a)
Standard Trigonometric Equations & General Solutions
- sin θ = 0 ⇒ θ = nπ
- cos θ = 0 ⇒ θ = (2n + 1)π / 2
- tan θ = 0 ⇒ θ = nπ
- sin θ = 1 ⇒ θ = (4n + 1)π / 2
- cos θ = 1 ⇒ θ = 2nπ
Equations of the Form f(θ) = f(α)
- sin θ = sin α ⇒ θ = nπ + (−1)nα
(α ∈ [−π/2, π/2]) - cos θ = cos α ⇒ θ = 2nπ ± α
(α ∈ (0, π]) - tan θ = tan α ⇒ θ = nπ + α
(α ∈ (−π/2, π/2])
Equations Involving Squares
- sin²θ = sin²α ⇒ θ = nπ ± α
- cos²θ = cos²α ⇒ θ = nπ ± α
- tan²θ = tan²α ⇒ θ = nπ ± α
Simultaneous Trigonometric Equations
- If sin θ = sin α and cos θ = cos α, then θ = 2nπ + α
- If sin θ = sin α and tan θ = tan α, then θ = 2nπ + α
- Rule: Find common solutions in [0, 2π] and then add 2nπ
General Solution of a cosθ + b sinθ = c
- Let a = r cosφ, b = r sinφ
- Where r = √(a² + b²) and tanφ = b / a
- Then the equation becomes: cos(θ − φ) = c / r
- If |c| > √(a² + b²) ⇒ No solution
- If |c| ≤ √(a² + b²), let cosα = |c| / √(a² + b²)
- General solution: θ = 2nπ ± α + φ
Important Notes
- If α is the least positive solution, then general solution is θ = 2nπ + α
- Always check the domain of the given equation
Visited 2 times, 1 visit(s) today
Was this article helpful?
YesNo
Last modified: January 2, 2026
