Notation & Basics

  • In ΔABC: sides opposite to angles A, B, C are a, b, c respectively.
  • Semi-perimeter: s = (a + b + c)/2
  • Area: Δ

Sine Rule

  • a/sinA = b/sinB = c/sinC
  • Equivalently: sinA/a = sinB/b = sinC/c

Cosine Formulae (Law of Cosines)

  • cosA = (b² + c² − a²)/(2bc)
  • cosB = (c² + a² − b²)/(2ca)
  • cosC = (a² + b² − c²)/(2ab)

Projection Formulae

  • a = b cosC + c cosB
  • b = c cosA + a cosC
  • c = a cosB + b cosA

Half-Angle Formulae

  • sin(A/2) = √[(s−b)(s−c)/(bc)]
  • sin(B/2) = √[(s−c)(s−a)/(ca)]
  • sin(C/2) = √[(s−a)(s−b)/(ab)]
  • cos(A/2) = √[s(s−a)/(bc)]
  • cos(B/2) = √[s(s−b)/(ca)]
  • cos(C/2) = √[s(s−c)/(ab)]
  • tan(A/2) = √[(s−b)(s−c)/(s(s−a))]
  • tan(B/2) = √[(s−c)(s−a)/(s(s−b))]
  • tan(C/2) = √[(s−a)(s−b)/(s(s−c))]

Area of a Triangle

  • Δ = (1/2)bc sinA = (1/2)ca sinB = (1/2)ab sinC
  • Δ = √[s(s−a)(s−b)(s−c)] (Heron’s formula)

Useful Area Relations

  • sinA = 2Δ/(bc), sinB = 2Δ/(ca), sinC = 2Δ/(ab)
  • sinA/a = sinB/b = sinC/c = 2Δ/(abc)

Napier’s Analogy

  • tan((B−C)/2) = (b−c)/(b+c) · cot(A/2)
  • tan((C−A)/2) = (c−a)/(c+a) · cot(B/2)
  • tan((A−B)/2) = (a−b)/(a+b) · cot(C/2)

Circumcircle

  • Circumradius: R = a/(2sinA) = b/(2sinB) = c/(2sinC) = abc/(4Δ)

Incircle

  • Inradius: r = Δ/s
  • r = (s−a)tan(A/2) = (s−b)tan(B/2) = (s−c)tan(C/2)
  • r = 4R sin(A/2) sin(B/2) sin(C/2)

Excircles

  • r₁ = Δ/(s−a), r₂ = Δ/(s−b), r₃ = Δ/(s−c)
  • r₁ = s tan(A/2), r₂ = s tan(B/2), r₃ = s tan(C/2)
  • r₁ = 4R sin(A/2) cos(B/2) cos(C/2) (cyclic for r₂, r₃)

Orthocentre

  • Distances from vertices: OA = 2R cosA, OB = 2R cosB, OC = 2R cosC
  • Distances to sides: OD = 2R cosB cosC, OE = 2R cosC cosA, OF = 2R cosA cosB
  • Circumradius of pedal triangle: R/2
  • Area of pedal triangle: 2Δ cosA cosB cosC

Important Results

  • tan(A/2) − tan(B/2) = (s−c)/s and cot(A/2) − cot(B/2) = s/(s−c)
  • tan(A/2) + tan(B/2) = c/s, cot(A/2) + cot(B/2) = (s−c)/Δ
  • Cyclic identities with s, a, b, c are frequently tested in JEE Main.
Visited 2 times, 1 visit(s) today
Was this article helpful?
YesNo

Leave a Reply

Your email address will not be published. Required fields are marked *

Close Search Window