Notation & Basics
- In ΔABC: sides opposite to angles A, B, C are a, b, c respectively.
- Semi-perimeter: s = (a + b + c)/2
- Area: Δ
Sine Rule
- a/sinA = b/sinB = c/sinC
- Equivalently: sinA/a = sinB/b = sinC/c
Cosine Formulae (Law of Cosines)
- cosA = (b² + c² − a²)/(2bc)
- cosB = (c² + a² − b²)/(2ca)
- cosC = (a² + b² − c²)/(2ab)
Projection Formulae
- a = b cosC + c cosB
- b = c cosA + a cosC
- c = a cosB + b cosA
Half-Angle Formulae
- sin(A/2) = √[(s−b)(s−c)/(bc)]
- sin(B/2) = √[(s−c)(s−a)/(ca)]
- sin(C/2) = √[(s−a)(s−b)/(ab)]
- cos(A/2) = √[s(s−a)/(bc)]
- cos(B/2) = √[s(s−b)/(ca)]
- cos(C/2) = √[s(s−c)/(ab)]
- tan(A/2) = √[(s−b)(s−c)/(s(s−a))]
- tan(B/2) = √[(s−c)(s−a)/(s(s−b))]
- tan(C/2) = √[(s−a)(s−b)/(s(s−c))]
Area of a Triangle
- Δ = (1/2)bc sinA = (1/2)ca sinB = (1/2)ab sinC
- Δ = √[s(s−a)(s−b)(s−c)] (Heron’s formula)
Useful Area Relations
- sinA = 2Δ/(bc), sinB = 2Δ/(ca), sinC = 2Δ/(ab)
- sinA/a = sinB/b = sinC/c = 2Δ/(abc)
Napier’s Analogy
- tan((B−C)/2) = (b−c)/(b+c) · cot(A/2)
- tan((C−A)/2) = (c−a)/(c+a) · cot(B/2)
- tan((A−B)/2) = (a−b)/(a+b) · cot(C/2)
Circumcircle
- Circumradius: R = a/(2sinA) = b/(2sinB) = c/(2sinC) = abc/(4Δ)
Incircle
- Inradius: r = Δ/s
- r = (s−a)tan(A/2) = (s−b)tan(B/2) = (s−c)tan(C/2)
- r = 4R sin(A/2) sin(B/2) sin(C/2)
Excircles
- r₁ = Δ/(s−a), r₂ = Δ/(s−b), r₃ = Δ/(s−c)
- r₁ = s tan(A/2), r₂ = s tan(B/2), r₃ = s tan(C/2)
- r₁ = 4R sin(A/2) cos(B/2) cos(C/2) (cyclic for r₂, r₃)
Orthocentre
- Distances from vertices: OA = 2R cosA, OB = 2R cosB, OC = 2R cosC
- Distances to sides: OD = 2R cosB cosC, OE = 2R cosC cosA, OF = 2R cosA cosB
- Circumradius of pedal triangle: R/2
- Area of pedal triangle: 2Δ cosA cosB cosC
Important Results
- tan(A/2) − tan(B/2) = (s−c)/s and cot(A/2) − cot(B/2) = s/(s−c)
- tan(A/2) + tan(B/2) = c/s, cot(A/2) + cot(B/2) = (s−c)/Δ
- Cyclic identities with s, a, b, c are frequently tested in JEE Main.
Visited 2 times, 1 visit(s) today
Was this article helpful?
YesNo
Last modified: January 2, 2026
