Standard Forms of Equation of a Circle
General Form
- x² + y² + 2gx + 2fy + c = 0
- Centre: (−g, −f)
- Radius: √(g² + f² − c)
Centre–Radius Form
- (x − h)² + (y − k)² = a²
- Centre: (h, k), Radius: a
- If centre is origin: x² + y² = r²
Diameter Form
- If (x₁, y₁) and (x₂, y₂) are endpoints of diameter:
- (x − x₁)(x − x₂) + (y − y₁)(y − y₂) = 0
Parametric Equations of a Circle
- For x² + y² = a²:
- x = a cosθ, y = a sinθ
- For (x − h)² + (y − k)² = a²:
- x = h + a cosθ, y = k + a sinθ
- For x² + y² + 2gx + 2fy + c = 0:
- x = −g + √(g² + f² − c) cosθ, y = −f + √(g² + f² − c) sinθ
Circle in Special Positions
Touching Coordinate Axes
- Touching both axes: (x ± a)² + (y ± a)² = a²
- Touching x-axis at (h, 0): (x − h)² + (y − a)² = a²
- Touching y-axis at (0, k): (x − a)² + (y − k)² = a²
Chord & Intercepts
- Length of chord at distance p from centre:
- Chord length = 2√(a² − p²)
- For x² + y² + 2gx + 2fy + c = 0:
- Intercept on x-axis: 2√(g² − c)
- Intercept on y-axis: 2√(f² − c)
Position of a Point w.r.t. a Circle
- For point (x₁, y₁), evaluate:
- S₁ = x₁² + y₁² + 2gx₁ + 2fy₁ + c
- S₁ > 0 → outside the circle
- S₁ = 0 → on the circle
- S₁ < 0 → inside the circle
Position of a Line w.r.t. a Circle
- If p = perpendicular distance from centre to line, r = radius:
- p > r → line outside circle
- p = r → tangent
- p < r → secant (chord)
- p = 0 → diameter
Equation of Tangent
- Tangent at point (x₁, y₁) to x² + y² + 2gx + 2fy + c = 0:
- xx₁ + yy₁ + g(x + x₁) + f(y + y₁) + c = 0
- Tangent to x² + y² = a² with slope m:
- y = mx ± a√(1 + m²)
Equation of Normal
- Normal at (x₁, y₁) to x² + y² + 2gx + 2fy + c = 0:
- (x − x₁)/(x₁ + g) = (y − y₁)/(y₁ + f)
- For x² + y² = a²:
- x/x₁ = y/y₁
Length of Tangent from a Point
- From point (x₁, y₁) to circle S = 0:
- Length = √S₁
- Angle between two tangents:
- 2 tan⁻¹ (√S₁ / r)
Pair of Tangents
- Combined equation from point (x₁, y₁):
- S · S₁ = T²
Director Circle
- Locus of intersection of perpendicular tangents
- For x² + y² = a²:
- x² + y² = 2a²
Chord of Contact
- From point (x₁, y₁) to circle S = 0:
- xx₁ + yy₁ + g(x + x₁) + f(y + y₁) + c = 0
Pole & Polar
- Polar of point (x₁, y₁) w.r.t. x² + y² = a²:
- xx₁ + yy₁ = a²
- For general circle:
- xx₁ + yy₁ + g(x + x₁) + f(y + y₁) + c = 0
Radical Axis
- For circles S = 0 and S′ = 0:
- S − S′ = 0
- Perpendicular to line joining centres
- Coincides with common chord if circles intersect
Radical Centre
- Point of intersection of radical axes of three circles
- Obtained by solving any two of:
- S₁ − S₂ = 0, S₂ − S₃ = 0, S₃ − S₁ = 0
Family of Circles
- Through intersection of two circles:
- S + λS′ = 0, λ ≠ −1
- Through intersection of a circle and a line:
- S + λL = 0
Visited 1 times, 1 visit(s) today
Was this article helpful?
YesNo
Last modified: January 2, 2026
