Standard Equation of an Ellipse

  • x²/a² + y²/b² = 1, where a > b > 0
  • Major axis along x-axis
  • Centre: (0, 0)

Symmetry

  • Symmetric about x-axis
  • Symmetric about y-axis
  • Symmetric about origin

Axes & Key Lengths

  • Length of major axis: 2a
  • Length of minor axis: 2b
  • Vertices: (±a, 0)
  • Co-vertices: (0, ±b)

Foci & Eccentricity

  • Distance of focus from centre: ae
  • Foci: (±ae, 0)
  • Distance between foci: 2ae
  • e = √(1 − b²/a²)
  • b² = a²(1 − e²)

Directrices

  • Equations: x = ±a/e
  • Distance between directrices: 2a/e

Important Property

  • For any point P on ellipse: SP + S′P = 2a (constant)

Latus Rectum

  • Length of latus rectum: 2b²/a
  • Equations: x = ±ae
  • Endpoints: (ae, ±b²/a), (−ae, ±b²/a)

Auxiliary Circle

  • Equation: x² + y² = a²
  • Used to define eccentric angle
  • If point on ellipse is (a cosθ, b sinθ), θ is eccentric angle

Parametric Coordinates

  • x = a cosθ
  • y = b sinθ
  • Parameter range: 0 ≤ θ < 2π

Equation of Chord

  • Chord joining points θ₁ and θ₂:
  • (x/a) cos((θ₁+θ₂)/2) + (y/b) sin((θ₁+θ₂)/2) = cos((θ₁−θ₂)/2)

Position of a Point

  • For point (x₁, y₁), evaluate:
  • x₁²/a² + y₁²/b²
  • > 1 → outside ellipse
  • = 1 → on ellipse
  • < 1 → inside ellipse

Equation of Tangent

Point Form

  • Tangent at (x₁, y₁): xx₁/a² + yy₁/b² = 1

Parametric Form

  • Tangent at (a cosθ, b sinθ): (x/a) cosθ + (y/b) sinθ = 1

Slope Form

  • y = mx ± √(a²m² + b²)
  • Condition of tangency: c² = a²m² + b²

Director Circle

  • Locus of intersection of perpendicular tangents
  • Equation: x² + y² = a² + b²

Equation of Normal

Point Form

  • a²x/x₁ − b²y/y₁ = a² − b²

Parametric Form

  • ax/secθ − by/cosecθ = a² − b²

Slope Form

  • y = mx ± m(a² − b²)/√(a² + b²m²)

Pair of Tangents from a Point

  • From point (x₁, y₁):
  • SS₁ = T²
  • Where S = x²/a² + y²/b² − 1, S₁ = x₁²/a² + y₁²/b² − 1, T = xx₁/a² + yy₁/b² − 1

Chord with Given Midpoint

  • Equation: T = S₁

Chord of Contact

  • Equation: T = 0

Pole & Polar

  • Polar of point (x₁, y₁): T = 0
  • Polar of focus is the directrix
  • Conjugate points & lines follow reciprocity property

Diameter of an Ellipse

  • Locus of midpoints of parallel chords
  • Diameter bisecting chords of slope m:
  • y = (b² / a²m) x
  • Every diameter passes through centre

Conjugate Diameters

  • Each diameter bisects chords parallel to the other
  • Major & minor axes are conjugate diameters
  • If slopes are m₁, m₂:
  • m₁m₂ = −b²/a²
  • Eccentric angles differ by π/2
Visited 1 times, 1 visit(s) today
Was this article helpful?
YesNo

Leave a Reply

Your email address will not be published. Required fields are marked *

Close Search Window