Definition of Inverse Trigonometric Functions
- sin⁻¹x = θ ⇔ sinθ = x
- cos⁻¹x = θ ⇔ cosθ = x
- tan⁻¹x = θ ⇔ tanθ = x
- cot⁻¹x = θ ⇔ cotθ = x
- sec⁻¹x = θ ⇔ secθ = x
- cosec⁻¹x = θ ⇔ cosecθ = x
Domain and Range (Principal Values)
- y = sin⁻¹x Domain: [-1, 1] Range: [−π/2, π/2]
- y = cos⁻¹x Domain: [-1, 1] Range: [0, π]
- y = tan⁻¹x Domain: (−∞, ∞) Range: (−π/2, π/2)
- y = cot⁻¹x Domain: (−∞, ∞) Range: (0, π)
- y = sec⁻¹x Domain: (−∞, −1] ∪ [1, ∞) Range: [0, π], y ≠ π/2
- y = cosec⁻¹x Domain: (−∞, −1] ∪ [1, ∞) Range: [−π/2, π/2], y ≠ 0
Basic Properties
- sin(sin⁻¹x) = x, −1 ≤ x ≤ 1
- cos(cos⁻¹x) = x, −1 ≤ x ≤ 1
- tan(tan⁻¹x) = x, x ∈ ℝ
- sin⁻¹(sinθ) = θ, only if −π/2 ≤ θ ≤ π/2
- cos⁻¹(cosθ) = θ, only if 0 ≤ θ ≤ π
- tan⁻¹(tanθ) = θ, only if −π/2 < θ < π/2
Negative Argument Properties
- sin⁻¹(−x) = −sin⁻¹x
- cos⁻¹(−x) = π − cos⁻¹x
- tan⁻¹(−x) = −tan⁻¹x
- cot⁻¹(−x) = π − cot⁻¹x
Important Identities
- sin⁻¹x + cos⁻¹x = π/2, −1 ≤ x ≤ 1
- tan⁻¹x + cot⁻¹x = π/2, x ∈ ℝ
- sec⁻¹x + cosec⁻¹x = π/2, |x| ≥ 1
Relations Between Inverse Functions
- sin⁻¹x = cosec⁻¹(1/x), |x| ≤ 1, x ≠ 0
- cos⁻¹x = sec⁻¹(1/x), |x| ≤ 1, x ≠ 0
- tan⁻¹x = cot⁻¹(1/x), x > 0
- If x < 0: tan⁻¹x = π + cot⁻¹(1/x)
Sum and Difference Formulae
Sine Inverse
-
sin⁻¹x + sin⁻¹y = sin⁻¹( x√(1−y²) + y√(1−x²) )
Condition: x² + y² ≤ 1 - sin⁻¹x − sin⁻¹y = sin⁻¹( x√(1−y²) − y√(1−x²) )
Cosine Inverse
- cos⁻¹x + cos⁻¹y = cos⁻¹( xy − √(1−x²)√(1−y²) )
- cos⁻¹x − cos⁻¹y = cos⁻¹( xy + √(1−x²)√(1−y²) )
Tangent Inverse
- tan⁻¹x + tan⁻¹y = tan⁻¹( (x + y)/(1 − xy) ) , xy < 1
- tan⁻¹x − tan⁻¹y = tan⁻¹( (x − y)/(1 + xy) )
Multiple Angle Results
- 2 sin⁻¹x = sin⁻¹(2x√(1−x²))
- 2 cos⁻¹x = cos⁻¹(2x² − 1)
- 2 tan⁻¹x = tan⁻¹(2x / (1 − x²))
- 3 sin⁻¹x = sin⁻¹(3x − 4x³)
- 3 cos⁻¹x = cos⁻¹(4x³ − 3x)
- 3 tan⁻¹x = tan⁻¹( (3x − x³)/(1 − 3x²) )
Useful Transformations
- tan⁻¹(x/√(a² − x²)) = sin⁻¹(x/a)
- tan⁻¹(√(1+x²) − √(1−x²) / √(1+x²) + √(1−x²)) = π/4 + (1/2)cos⁻¹x²
JEE Main Focus Tips
- Always check the principal value range
- Reduce expressions to standard inverse forms
- Be careful with sign and quadrant restrictions
- Use identities to simplify multi-term inverse expressions
Visited 1 times, 1 visit(s) today
Was this article helpful?
YesNo
Last modified: January 2, 2026
