Indefinite Integral
- If F′(x) = f(x), then ∫ f(x) dx = F(x) + C
- C is the constant of integration
Basic Theorems of Integration
- ∫ k f(x) dx = k ∫ f(x) dx
- ∫ [f(x) ± g(x)] dx = ∫ f(x) dx ± ∫ g(x) dx
- d/dx [ ∫ f(x) dx ] = f(x)
- ∫ d/dx [f(x)] dx = f(x) + C
Standard Integrals
- ∫ xⁿ dx = xⁿ⁺¹/(n+1) + C, n ≠ −1
- ∫ 1/x dx = ln|x| + C
- ∫ eˣ dx = eˣ + C
- ∫ aˣ dx = aˣ / ln a + C
- ∫ sin x dx = −cos x + C
- ∫ cos x dx = sin x + C
- ∫ tan x dx = ln|sec x| + C
- ∫ cot x dx = ln|sin x| + C
- ∫ sec x dx = ln|sec x + tan x| + C
- ∫ cosec x dx = ln|cosec x − cot x| + C
- ∫ sec²x dx = tan x + C
- ∫ cosec²x dx = −cot x + C
- ∫ sec x tan x dx = sec x + C
- ∫ cosec x cot x dx = −cosec x + C
Important Algebraic Forms
- ∫ 1/(x² + a²) dx = (1/a) tan⁻¹(x/a) + C
- ∫ 1/(x² − a²) dx = (1/2a) ln|(x−a)/(x+a)| + C
- ∫ 1/√(a² − x²) dx = sin⁻¹(x/a) + C
- ∫ 1/√(x² + a²) dx = ln|x + √(x² + a²)| + C
- ∫ 1/√(x² − a²) dx = ln|x + √(x² − a²)| + C
Exponential–Trigonometric Integrals
- ∫ eax sin bx dx = eax(a sin bx − b cos bx)/(a² + b²) + C
- ∫ eax cos bx dx = eax(a cos bx + b sin bx)/(a² + b²) + C
Integration by Substitution
- Used when integrand contains a function and its derivative
- Put f(x) = t so that f′(x) dx = dt
- ∫ f(f(x)) f′(x) dx = ∫ f(t) dt
- If integrand is of form f(ax + b), put ax + b = t
Useful Standard Substitutions
- √(a² − x²) → x = a sinθ
- √(a² + x²) → x = a tanθ or a sinhθ
- √(x² − a²) → x = a secθ or a coshθ
- √((a−x)/(a+x)) → x = a cosθ
Integration by Parts
- ∫ u v dx = u ∫ v dx − ∫ (du/dx)(∫ v dx) dx
- Choose u using ILATE rule:
- Inverse trigonometric → Logarithmic → Algebraic → Trigonometric → Exponential
- For only log or inverse trig functions, take the other function as 1
Special Results
- ∫ eˣ [f(x) + f′(x)] dx = eˣ f(x) + C
- ∫ f′(x)/f(x) dx = ln|f(x)| + C
- ∫ f′(x)/√f(x) dx = 2√f(x) + C
Trigonometric Rational Integrals
- For integrals involving a sin x + b cos x, write:
- a = r cosθ, b = r sinθ
- Then denominator reduces to r sin(x + θ) or r cos(x + θ)
JEE Main Focus Tips
- Always try substitution before expansion
- Memorise standard results — direct questions are common
- Integration by parts is frequently tested with log and inverse trig
- Watch for expressions of the form f(x)+f′(x)
- Final answer must include + C
Visited 1 times, 1 visit(s) today
Was this article helpful?
YesNo
Last modified: January 2, 2026
